20 research outputs found

    Protein (Multi-)Location Prediction: Using Location Inter-Dependencies in a Probabilistic Framework

    Full text link
    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins, assuming that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems have attempted to predict multiple locations of proteins, they typically treat locations as independent or capture inter-dependencies by treating each locations-combination present in the training set as an individual location-class. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the multiple-location-prediction process, using a collection of Bayesian network classifiers. We evaluate our system on a dataset of single- and multi-localized proteins. Our results, obtained by incorporating inter-dependencies are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without restricting predictions to be based only on location-combinations present in the training set.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    DeepPlace: Learning to Place Applications in Multi-Tenant Clusters

    Full text link
    Large multi-tenant production clusters often have to handle a variety of jobs and applications with a variety of complex resource usage characteristics. It is non-trivial and non-optimal to manually create placement rules for scheduling that would decide which applications should co-locate. In this paper, we present DeepPlace, a scheduler that learns to exploits various temporal resource usage patterns of applications using Deep Reinforcement Learning (Deep RL) to reduce resource competition across jobs running in the same machine while at the same time optimizing for overall cluster utilization.Comment: APSys 201

    Mining Associations Using Directed Hypergraphs

    Get PDF
    This thesis proposes a novel directed hypergraph based model for any database. We introduce the notion of association rules for multi-valued attributes, which is an adaptation of the definition of quantitative association rules known in the literature. The association rules for multi-valued attributes are integrated in building the directed hypergraph model. This model allows to capture attribute-level associations and their strength. Basing on this model, we provide association-based similarity notions between any two attributes and present a method for finding clusters of similar attributes. We then propose algorithms to identify a subset of attributes known as a leading indicator that influences the values of almost all other attributes. Finally, we present an association-based classifier that can be used to predict values of attributes. We demonstrate the effectiveness of our proposed model, notions, algorithms, and classifier through experiments on a financial time-series data set (S&P 500)

    Data from: Determining the subcellular location of new proteins from microscope images using local features

    No full text
    Motivation: Evaluation of previous systems for automated determination of subcellular location from microscope images has been done using datasets in which each location class consisted of multiple images of the same representative protein. Here, we frame a more challenging and useful problem where previously unseen proteins are to be classified. Results: Using CD-tagging, we generated two new image datasets for evaluation of this problem, which contain several different proteins for each location class. Evaluation of previous methods on these new datasets showed that it is much harder to train a classifier that generalizes across different proteins than one that simply recognizes a protein it was trained on. We therefore developed and evaluated additional approaches, incorporating novel modifications of local features techniques. These extended the notion of local features to exploit both the protein image and any reference markers that were imaged in parallel. With these, we obtained a large accuracy improvement in our new datasets over existing methods. Additionally, these features help achieve classification improvements for other previously studied datasets

    Labeled RandTag Confocal Images

    No full text
    This datasets consists of fluorescent microscope images of GFP-tagged proteins locating to different organelles. The organelles were annotated by visual inspection. For each organelle, multiple proteins locating to it were identified; and for each protein, multiple images were acquired. Images contain two channels: GFP tagged protein and a nuclear marker (Hoechst). NIH 3T3 cells were tagged using CD tagging. This data was acquired on a confocal microscope

    Determining the subcellular location of new proteins from microscope images using local features.

    No full text
    MOTIVATION: Evaluation of previous systems for automated determination of subcellular location from microscope images has been done using datasets in which each location class consisted of multiple images of the same representative protein. Here, we frame a more challenging and useful problem where previously unseen proteins are to be classified. RESULTS: Using CD-tagging, we generated two new image datasets for evaluation of this problem, which contain several different proteins for each location class. Evaluation of previous methods on these new datasets showed that it is much harder to train a classifier that generalizes across different proteins than one that simply recognizes a protein it was trained on. We therefore developed and evaluated additional approaches, incorporating novel modifications of local features techniques. These extended the notion of local features to exploit both the protein image and any reference markers that were imaged in parallel. With these, we obtained a large accuracy improvement in our new datasets over existing methods. Additionally, these features help achieve classification improvements for other previously studied datasets. AVAILABILITY: The datasets are available for download at http://murphylab.web.cmu.edu/data/. The software was written in Python and C++ and is available under an open-source license at http://murphylab.web.cmu.edu/software/. The code is split into a library, which can be easily reused for other data and a small driver script for reproducing all results presented here. A step-by-step tutorial on applying the methods to new datasets is also available at that address. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.</p
    corecore